(12)

United States Patent
Wilking et al.

US009195690B2

(10) Patent No.: US 9,195,690 B2
(45) Date of Patent: Nov. 24, 2015

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)
(52)

(58)

(56)

ITERATIVE MEASURES

Applicants:Michael Wilking, Zuzenhausen (DE);
Stefan Dipper, Wiesloch (DE);
Sebastian Schroetel, Heidelberg (DE)

Inventors: Michael Wilking, Zuzenhausen (DE);
Stefan Dipper, Wiesloch (DE);
Sebastian Schroetel, Heidelberg (DE)

Assignee: SAP SE, Walldorf (DE)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 266 days.

Appl. No.: 13/927,498

Filed: Jun. 26,2013

Prior Publication Data

US 2015/0006588 A1l Jan. 1, 2015

Int. CI.

GOGF 17/30 (2006.01)

U.S. CL

CPC e GOG6F 17/30292 (2013.01)
Field of Classification Search

USPC e 707/791, 802

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

7499914 B2* 3/2009 Diabetal.ccccovvrviiiirennnn. 1/1
7,689,477 B2 3/2010 Gabelmann et al.

8,055,369 B2 11/2011 Birjandi et al.

8,069,101 B1 11/2011 Von Groll et al.

8,200,521 B2 6/2012 Hader

200
~

8,255,265 B2 8/2012 Warier et al.

8,392,364 B2 3/2013 Horn et al.

8,402,473 Bl 3/2013 Becker et al.
2002/0169657 Al 11/2002 Singh et al.

2002/0188499 Al* 12/2002 Jenkinsetal. ... 705/10
2003/0204463 Al 10/2003 Mitsukuni et al.
2003/0208392 Al* 11/2003 Shekaretal. ... 705/8

2004/0059649 Al* 3/2004 Sakuma et al. .. 705/28

2004/0230445 Al* 11/2004 Heinzel et al. . 705/1
2005/0075951 Al* 42005 Ziegercccooevvvinninnn 705/28
2005/0114241 Al 5/2005 Hirsch et al.

2005/0131578 Al* 6/2005 Weavercocoevenne. 700/244
2005/0159997 Al 7/2005 John

2008/0147490 Al* 6/2008 Najmietal. ... 705/10
2008/0310260 Al* 12/2008 Segalcccoovvviivinnn. 368/281
2010/0161366 Al 6/2010 Clemens et al.

2010/0161453 Al* 6/2010 Powell etal. 705/29
2012/0029967 Al 2/2012 Kukreja et al.

2013/0018696 Al* 1/2013 Meldrumc....... 705/7.27

FOREIGN PATENT DOCUMENTS

EP 1225528 A2 7/2002
EP 1248216 A1 10/2002
EP 1471447 A2 10/2004

* cited by examiner

Primary Examiner — Kim Nguyen
(74) Attorney, Agent, or Firm — Buckley, Maschoft &
Talwalkar LLC

(57) ABSTRACT

A system includes determination of a dimension over which
to iterate, determination of a first measure for which an aggre-
gated value is determined per iteration, determination of a
second measure for which a value is determined once per
calculation of an iterative measure and against which to com-
pare the aggregated value per iteration, and storage of the
dimension, the first measure and the second measure as meta-
data of an iterative measure.

3 Claims, 6 Drawing Sheets

fszw

Determine An Iteration Dimension

~—

l r 8220

Determine A First Measure For Which An Aggregated
Value Is Determined Per lteration

|

l r 8230

Aggregated Value Is Determined Once Per Calculation
Of The Iterative Measure And Against Which The

[Determine A Second Measure For Which An]

Aggregated Value Is Compared Per lteration

l oy

(Determine An Aggregation Rule For The Comparison J

l r $250

(Determine An Cperalor For The Comparison

rSZSO

The Second Measure, And The Operator As Iterative

[Store The lteration Dimension, The First Measure,]

Measure Metadata

U.S. Patent Nov. 24, 2015 Sheet 1 of 6 US 9,195,690 B2

100‘\\ 130

CLIENT

120
METADATA 10
ADMIN ~

112

—
=N

FIG. 1

U.S. Patent Nov. 24, 2015 Sheet 2 of 6 US 9,195,690 B2

200
N

S210
-

[Determine An lteration Dimension

—/

22
(’S 0

Determine A First Measure For Which An Aggregated
Value Is Determined Per Iteration

—

- $230
{ Determine A Second Measure For Which An

Aggregated Value Is Determined Once Per Calculation
Of The lterative Measure And Against Which The
Aggregated Value Is Compared Per lteration

S240
-

Determine An Aggregation Rule For The Comparisonj

5250
-

(Determine An Operator For The Comparison]

S260
r

Store The Iteration Dimension, The First Measure,
The Second Measure, And The Operator As lterative
Measure Metadata

FIG. 2

U.S. Patent

US 9,195,690 B2

Nov. 24, 2015 Sheet 3 of 6
300 N
Define Measure
310
Name OVC_ST_COV
Stock Coverage Measure 330
320 [
Time Granularity 0CALDAY
Stock OVC_STOCK _1 Stock 1
(" [ovc_sTock 2| stock2
340
Demand 0VC_DMD_1 Demand 1
/7 | ovcbMD_2 | Demand2
350
Supply O0VC_SUP_1 Supply 1
” | ovC_sup_2 Supply 2
360

FIG. 3

U.S. Patent Nov. 24, 2015 Sheet 4 of 6 US 9,195,690 B2

400 N

410 420 430
Measure - Iterative_Measure_Flag | Iteration_Dimension
O0VC_ST_COV X OCALDAY

FIG. 4

U.S. Patent Nov. 24, 2015 Sheet 5 of 6 US 9,195,690 B2
500 N
510 520 530
MEASURE ASSOCIATION_NO [Association type Associated measure

O0VC_ST_COV 1 STOCK_COVERAGE_STOCK OVC_STOCK_1

O0VC_ST_COV 2 STOCK_COVERAGE_STOCK OVC_STOCK_2

O0VC_ST_COV 3 STOCK_COVERAGE_DEMAND 0VC_DMD_1

O0vVC_ST_CQvV 4 STOCK_COVERAGE_DEMAND 0VC_DMD_2

0VC_ST_COV 5 STOCK_COVERAGE_SUPPLY 0VC_SUP_1

O0VC_ST_COV 6 STOCK_COVERAGE_SUPPLY 0VC_SUP_2

FIG. 6

U.S. Patent

US 9,195,690 B2

Nov. 24, 2015 Sheet 6 of 6
___ ;
|
|
Input o . Output |
Device(s) Communication Device Device(s) :
640 620 850 |
A Y |
|
|
|
|
|
|
Processor :
|
610 |
b b :
|
|
Memory :
660 I
|
— v T |
— A :
630 |
|
(Metadata &> |
|
|
|
(Data &) :
|
|
|
|

US 9,195,690 B2

1
ITERATIVE MEASURES

BACKGROUND

Systems for storing and providing business data may
model the data using logical entities such as dimensions and
measures. Dimensions represent sets of values along which
an analysis may be performed or a report may be generated
(e.g., Country, Year, Product), and measures are indicators,
most often numeric, whose values can be determined for a
given combination of dimension values. For example, a Sales
measure may be used to determine the total sales for January
(i.e., a value of the Month dimension) in France (i.e., a value
of the Country dimension).

Measures may be used in formulas, in conditions, and in
any navigation state of a query. Types of measures may
include “basic” measures, “restricted” measures (i.e., mea-
sures filtered by one or more dimension values), and “calcu-
lated” measures (i.e., measures defined by a formula, which
may include one or more measures, constants and operators).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system according to some
embodiments.

FIG. 2 is a flow diagram of a process according to some
embodiments.

FIG. 3 is an outward view of a user interface according to
some embodiments.

FIG. 4 is a tabular representation of a portion of a header
table according to some embodiments.

FIG. 5 is a tabular representation of a portion of an asso-
ciation table according to some embodiments.

FIG. 6 is a block diagram of a system according to some
embodiments.

DETAILED DESCRIPTION

The following description is provided to enable any person
in the art to make and use the described embodiments and sets
forth the best mode contemplated for carrying out some
embodiments. Various modifications, however, will remain
readily apparent to those in the art.

FIG. 1 is a block diagram of system 100 according to some
embodiments. System 100 includes database 110, adminis-
trator 120 and client 130. System 100 may generally operate
to store data within database 110 and provide the data to client
130.

Database 110 may comprise any query-responsive data
source or sources that are or become known, including but not
limited to a structured-query language (SQL) relational data-
base management system. Database 110 may comprise a
relational database, a multi-dimensional database, an eXtend-
able Markup Language (XML) document, or any other data
storage system storing structured and/or unstructured data.
Data 112 of database 110 may be distributed among several
relational databases, multi-dimensional databases, and/or
other data sources. Embodiments are not limited to any num-
ber or types of data sources. For example, database 110 may
comprise one or more OnLine Analytical Processing (OLAP)
databases (i.e., cubes), spreadsheets, text documents, presen-
tations, etc.

Database 110 may implement an “in-memory” database, in
which volatile (e.g., non-disk-based) storage (e.g., Random
Access Memory) is used both for cache memory and for
storing data 112 during operation, and persistent storage (e.g.,
one or more fixed disks) is used for offline persistency of data

10

15

20

25

30

35

40

45

50

55

60

65

2

112 and for maintenance of database snapshots. Alternatively,
volatile storage may be used as cache memory for storing
recently-used database data, while persistent storage stores
data 112. In some embodiments, the data 112 comprises one
or more of conventional tabular data, row-based data stored in
row format, column-based data stored in columnar format,
and object-based data. Database 110 may also or alternatively
support multi-tenancy by providing multiple logical database
systems which are programmatically isolated from one
another. Moreover, data 112 may be indexed and/or selec-
tively replicated in an index to allow fast searching and
retrieval thereof.

Database 110 may store metadata 114 describing regarding
the structure, relationships and meaning of data 112. This
information may be generated by a database administrator
operating administrator 120, and may include data defining
the schema of database tables stored within data 112. A data-
base table schema may specify the name of a database table,
columns of the database table, the data type associated with
each column, and other information associated with the data-
base table. Administrator 120 may also define, within meta-
data 114, a logical schema of dimensions, measures, and
properties and their respective logical associations with the
database tables.

As mentioned above, database 110 generally provides data
112 to clients, such as client 130, in response to requests
received therefrom. In some embodiments, a user issues an
instruction to client 130 to analyze a set of values, such as the
values stored in a column of a database table. Client 130
generates a statement execution plan based on the instruction
and on the structure of data 112, as specified in metadata 114.
The plan is forwarded to database 110, which executes the
plan and returns a dataset to client 130 based on the plan.
Embodiments are not limited thereto.

Each of administrator 120 and client 130 may comprise
one or more devices executing program code of a software
application for presenting user interfaces to allow interaction
with database 110. Presentation of a user interface may com-
prise any degree or type of rendering, depending on the type
of user interface code generated by database 110. For
example, administrator 120 may execute a Web Browser to
receive a Web page (e.g., in HTML format) from database
110, and may render and present the Web page according to
known protocols. Either administrator 120 or client 130 may
also or alternatively present user interfaces by executing a
standalone executable file (e.g., an .exe file) or code (e.g., a
JAVA applet) within a virtual machine.

FIG. 2 comprises a flow diagram of process 200 according
to some embodiments. In some embodiments, various hard-
ware elements of data source 110 execute program code to
perform process 200. Process 200 and all other processes
mentioned herein may be embodied in processor-executable
program code read from one or more of non-transitory com-
puter-readable media, such as a floppy disk, a CD-ROM, a
DVD-ROM, a Flash drive, and a magnetic tape, and then
stored in a compressed, uncompiled and/or encrypted format.
In some embodiments, hard-wired circuitry may be used in
place of, or in combination with, program code for imple-
mentation of processes according to some embodiments.
Embodiments are therefore not limited to any specific com-
bination of hardware and software.

Process 200 may be executed to define (or model) an itera-
tive measure within data source 110. As will be evident from
the foregoing, the definition of an iterative measure may
provide efficiencies and advantages during operation of a
database system according to some embodiments.

US 9,195,690 B2

3

Initially, an iteration dimension is determined at S210. The
iteration dimension is a dimension over which to iterate, and
implicitly specifies the granularity of the dimension which is
represented by each iteration. The iteration dimension is an
element of a formula which will be evaluated in order to
determine the value of an iterative measure according to some
embodiments.

Generally, an iterative measure according to some embodi-
ments is expressed using the following formula:

IterativeMeasure(d)=aggr_rule(j|SecondMeasure(d)
operatorE,_,, ¥¥ FirstMeasure(i))

In the above formula, d represents the iteration dimension
01 S210. The other elements of the formula will be described
below.

Process 200 will be described with respect to an iterative
measure which represents the number of days for which the
current stock of an item covers demand for that item. This
number may be referred to as “stock coverage in weeks”.
Embodiments are not limited to this particular measure.

In one illustrative example, a store currently stocks 20 pairs
of jeans. The demand over each of the next four time periods
(e.g., t=week) is 10, 6, 4, and 3, respectively. The 20 pairs in
stock cover the first three demand periods (i.e., 20=20), but do
not cover the fourth demand period. Accordingly, the stock
coverage is 3 periods. In this example, the iteration dimension
determined at S210 is Week, and the implicitly specified
dimension value granularity is one week.

Stock coverage may be calculated using the following for-
mula:

StockCoverage(f)=max(jIStock(?)=Z,;_,,,“Demand(i))

The above formula includes measures (i.e., Stock and
Demand) and a dimension (t=Week). Demand corresponds to
FirstMeasure in the general formula shown above and Stock
corresponds to SecondMeasure in the general formula. In
contrast, formulas for calculated measures typically include
measures only, and operate only in a row context. Moreover,
the iteration of the above formula is conditional, in that the
iteration terminates once the aggregated demand exceeds the
stock. Conventional measures are also unable to support such
a conditional iteration.

The determination at S210 may be based on input received
by a user interface. In one example 0f S210, administrator 120
invokes a user interface for managing metadata. As described
above, such a user interface may be generated and displayed
by an application executing on administrator 120, may com-
prise a Web page or other interface provided to administrator
120 by database 110 and displayed thereby, or may be dis-
played by any other means.

FIG. 3 is an outward view of user interface 300 according
to some embodiments. User interface 300 facilitates the gen-
eration of metadata to define measures according to some
embodiments. Embodiments may utilize any other user inter-
face or system for performing the determination at S210
and/or the remaining determinations of process 200.

User interface 300 includes input field 310 for naming the
measure to be defined, and checkbox 320 to specify whether
or not the measure is a stock coverage measure according to
some embodiments.

The iteration dimension (i.e., the dimension over which to
iterate) is defined within input field 330. In the present
example, “OCALDAY” is defined as dimension over which to
iterate. Accordingly, the determination at S210 may be based
on the information which is input into field 330.

Continuing with process 200, a first measure is determined
at S220. The first measure is a measure for which an aggre-

10

15

20

25

30

40

45

50

55

60

65

4

gated value is determined per iteration. In the two formulas
shown above, this measure is FirstMeasure and Demand,
respectively. Accordingly, the administrator has completed
fields 350 of interface 300 to define this measure.

Area 360 of interface 300 also allows specification of
another measure (i.e., Supply) which is used to determine the
aggregated value per iteration. Using such a measure, the
above formula becomes:

StockCoverage(#)=max(|Stock(t)=X,_,, ,““[Demand
()-Supply()])

At S230, a second measure is determined to compare the
aggregated value against, per iteration. In the present example
and the above formula, the value is the Stock measure. Some
embodiments may determine a constant value instead of a
measure at S230 against which to compare the aggregated
value, per iteration.

An aggregation rule for the comparison (i.e., aggr_rule in
the above formula) is determined at S240. The aggregation
rule is a rule to aggregate the values of j for which the com-
parison evaluates to true. Typical aggregation rules are maxi-
mum and minimum. Embodiments may employ other aggre-
gation rules including, but not limited to, sum, average and
median. The aggregation rule according to the present
example is “max” and is hard-coded into the metadata for the
stock coverage measure, because interface 300 is specifically
intended for stock coverage measures which are evaluated
using the above stock coverage formula.

An operator for the comparison is determined at S250. The
operator according to the present example is “z” and is also
hard-coded into the metadata for the stock coverage measure.
Some embodiments may allow the administrator to specify
the aggregation rule and/or the operator for the comparison.

Interface 300 enables the user to enter one or more mea-
sures for stock, demand and supply. The interface ensures that
at least one measure is entered for stock and demand. In case
multiple measures are entered for stock, the stock measures
are aggregated before the calculation of the stock coverage
measure. The same is true for multiple demand or supply
measures. In case no measure is entered for supply, the cal-
culation does not consider supply.

Embodiments may provide a checkbox to define whether
ornot the measure is a more generic iterative measure accord-
ing to some embodiments instead of a checkbox to define
whether or not the measure is specifically a stock coverage
measure.

Finally, at S260, the iteration dimension, the measures, the
aggregation rule, and the operator are stored as measure meta-
data. This metadata may be stored in metadata 114 of data-
base 110 according to some embodiments.

FIGS. 4 and 5 illustrate tables to store the measure meta-
data according to some embodiments. In addition to conven-
tional columns 410, header table 400 of FIG. 4 includes
Tterative_Measure_Flag column 420 and Iteration_Dimen-
sion_column 430. Iterative_Measure_Flag column 420
includes a Boolean flag which marks the associated measure
as an iterative measure, while Iteration_Dimension column
430 specifies the dimension value granularity per iteration as
described above.

Association table 500 of FIG. 5 specifies the measures
which are associated with an iterative measure, and a type for
each association. FIG. 5 illustrates six associations which are
generated based on the information entered into interface 300
of FIG. 3 according to some embodiments.

By virtue of some embodiments of the foregoing, the cal-
culation of an iterative measure can be controlled by a data-
base client such as client 130, which may comprise an OLAP

US 9,195,690 B2

5

analytical engine. Accordingly, as long as the database client
is aware of the semantics of an iterative measure, a corre-
sponding formula for the iterative measure need not be imple-
mented in metadata 114. Moreover, the iterative measure may
be used as any other measure within system 100, like in a
formula, a calculated measure or a restricted measure.

FIG. 6 is a block diagram of system 600 according to some
embodiments. System 600 may comprise a general-purpose
computing system and may execute program code to perform
any of the processes described herein, including but not lim-
ited to process 200. System 600 may comprise an implemen-
tation of database 110, and may include other unshown ele-
ments according to some embodiments.

System 600 includes processor 610 operatively coupled to
communication device 620, data storage device 630, one or
more input devices 640, one or more output devices 650 and
memory 660. Communication device 620 may facilitate com-
munication with external devices, such as a reporting client,
or a data storage device. Input device(s) 640 may comprise,
for example, a keyboard, a keypad, a mouse or other pointing
device, a microphone, knob or a switch, an infra-red (IR) port,
a docking station, and/or a touch screen. Input device(s) 640
may be used, for example, to enter information into apparatus
600. Output device(s) 650 may comprise, for example, a
display (e.g., a display screen) a speaker, and/or a printer.

Data storage device 630 may comprise any appropriate
persistent storage device, including combinations of mag-
netic storage devices (e.g., magnetic tape, hard disk drives
and flash memory), optical storage devices, Read Only
Memory (ROM) devices, etc., while memory 660 may com-
prise Random Access Memory (RAM).

Metadata 632 and data 634 may respectively implement
metadata 112 and data 114 as described above. As also
described above, metadata 632 and data 634 may be imple-
mented in volatile memory such as memory 660. Data storage
device 630 may also store data and other program code for
providing additional functionality and/or which are necessary
for operation of system 600, such as device drivers, operating
system files, etc.

The foregoing diagrams represent logical architectures for
describing processes according to some embodiments, and
actual implementations may include more or different com-
ponents arranged in other manners. Other topologies may be
used in conjunction with other embodiments. Moreover, each
system described herein may be implemented by any number
of devices in communication via any number of other public
and/or private networks. Two or more of such computing
devices may be located remote from one another and may
communicate with one another via any known manner of
network(s) and/or a dedicated connection. Each device may
comprise any number of hardware and/or software elements
suitable to provide the functions described herein as well as
any other functions. For example, any computing device used
in an implementation of database 110 may include a proces-
sor to execute program code such that the computing device
operates as described herein.

All systems and processes discussed herein may be embod-
ied in program code stored on one or more non-transitory
computer-readable media. Such media may include, for
example, a floppy disk, a CD-ROM, a DVD-ROM, a Flash
drive, magnetic tape, and solid state Random Access Memory

10

15

20

25

30

35

40

45

50

55

60

6

(RAM) or Read Only Memory (ROM) storage units. Embodi-
ments are therefore not limited to any specific combination of
hardware and software.

Embodiments described herein are solely for the purpose
of illustration. Those skilled in the art will recognize other
embodiments may be practiced with modifications and alter-
ations to that described above.

What is claimed is:

1. A computing system comprising:

a data storage device;

a memory storing processor-executable program code; and

a processor to execute the processor-executable program

code in order to cause the computing system to:

determine a dimension over which to iterate, wherein the
dimension is a time dimension;

determine a first measure for which an aggregated value
is determined per iteration, wherein the first measure
is a demand measure;

determine a second measure for which a value is deter-
mined once per calculation of an iterative measure,
wherein the second measure is stock;

determine an operator for comparison of the aggregated
value against the second measure per iteration;

determine an aggregation rule; and

store the dimension, the first measure, the second value,
the operator and the aggregation rule as metadata to
define the iterative measure.

2. A non-transitory computer-readable medium storing
program code, the program code executable by a processor of
a computing system to cause the computing system to:

determine a dimension over which to iterate, wherein the

dimension is a time dimension;

determine a first measure for which an aggregated value is

determined per iteration, wherein the first measure is a
demand measure;

determine a second measure for which a value is deter-

mined once per calculation of an iterative measure,
wherein the second measure is stock;

determine an operator for comparison of the aggregated

value against the second measure per iteration;
determine an aggregation rule; and

store the dimension, the first measure, the second value, the

operator and the aggregation rule as metadata to define
the iterative measure.

3. A computer-implemented method comprising:

determining a dimension over which to iterate, wherein the

dimension is a time dimension;
determining a first measure for which an aggregated value
is determined per iteration, wherein the first measure is
a demand measure;

determining a second measure for which a value is deter-
mined once per calculation of an iterative measure,
wherein the second measure is stock;

determining an operator for comparison of the aggregated

value against the second measure per iteration;
determining an aggregation rule; and

storing the dimension, the first measure, the second mea-

sure, the operator and the aggregation rule as metadata to
define the iterative measure.

#* #* #* #* #*

